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Abstract. In this work we show that based on a conjecture for the pair
correlation of integers representable as sums of two squares, which was
first suggested by Connors and Keating and reformulated here, the sec-
ond moment of the distribution of the number of representable integers
in short intervals is Poissonian, where “short” means of length compa-
rable to the mean spacing between sums of two squares. In addition we
present a method for producing such conjectures through calculations in
prime powers modulo rings and describe how these conjectures, as well
as the above stated result, may by generalized to other binary quadratic
forms. While producing these pair correlation conjectures we arrive at
a surprising result regarding Mertens’ formula for primes in arithmetic
progressions, and in order to test the validity of the conjectures, we
present numerical computations which support our approach.

1. Introduction

Throughout this work n, k and h will denote positive integers, p denote
prime numbers and for abbreviation reasons we use a ≡ b (c) instead of
a ≡ b mod c. In addition we say mp(n) = k if pk | n but pk+1 - n.

1.1. Background and motivation. When studying the distribution of a
sequence of integers, for example the sequence of primes or of those repre-
sentable as a sum of two squares, a natural first step would be to understand
the mean density of such integers. For prime numbers this was achieved by
Hadamard and de la Vallee Poussin with their famous Prime Number The-
orem, and for sums of squares by Landau [L] . In order to learn more about
the distribution of such a set the next step would be to look at the k-point
correlation, or in other words to find an expression for

1
N

N∑
n=1

f (n+ d1) · ... · f (n+ dk) , N →∞

where f is the characteristic function of the set at hand and d1, ..., dk are dis-
tinct integers. These correlations give increasingly more precise data about
the distribution, where the 2-point correlation provides the leading quanti-
tative estimate of the fluctuations about the mean density of the sequence.
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Regarding the sequence of primes, Hardy and Littlewood gave [HL] the
following k-tuple conjecture for the number πd(N) of positive integers n ≤ N
for which all of n + d1, ..., n + dk are prime , d = (d1, ..., dk) and d1, ..., dk
distinct integers. The conjecture is:

(1.1) πd(N) ∼ Sd
N

(logN)k
as N →∞

provided Sd 6= 0, where the “singular series” Sd is

Sd =
∏

primes

pk−1 (p− νd(p))
(p− 1)k

and νd(p) stands for the number of residue classes modulo p occupied by
d1, ..., dk.

For k = 1 this is exactly the Prime Number Theorem, and for k ≥ 2 is
has not been proved for any d.

1.2. From a k-tuple conjecture to distribution in short intervals.
We will follow Gallagher’s work [G] on primes in order to obtain the moments
of distribution of the number of integers representable as a sum of two
squares in short intervals. Consider first the set of primes and the prime
number theorem, which states

π(N) ∼ N

logN , N →∞.

This relation can be understood as the statement that the number of
primes in an interval (n, n+ α), averaged over n ≤ N , tends to the limit
λ, when N and α tend to infinity in such a way that α ∼ λ logN with λ a
positive constant.

Gallagher studies the distribution of values of π(n+α)− π(n) for n ≤ N
and α ∼ λ logN , and shows that assuming the prime k-tuple conjecture of
Hardy and Littlewood (1.1), it suffices that

(1.2)
∑

1≤d1,..,dk≤H
Sd ∼ Hk

holds for all k ∈ N in order to prove that all the moments of the distribution
tend to moments of Poisson distribution, and so the distribution tends to
Poisson distribution with parameter λ as N → ∞. This means that the
distribution of primes in such intervals is similar to the distribution of a
random set of integers with mean λ, and so even though clearly primes are
not distributed randomly, in the perspective of intervals such as those we
deal with here they do. Gallagher has proved (1.2) in [G], and a simpler
proof was presented by Kevin Ford [F]. We shall refer to this result as
Gallagher’s Lemma.

Consider now the set of integers which are representable as sum of squares
and Landau’s theorem, which states that B(N), the number of such integers
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up to N , is given asymptotically by

(1.3) B(N) ∼ β N√
logN

+O

(
N

log
3
4 N

)
, N →∞

where β =
√

1
2

∏
p≡3 (4)

(1− p−2)−1 is the Landau-Ramanujan constant.

Similar to the primes, this relation can be understood as the statement
that the number of primes in an interval (n, n+ α), averaged over n ≤ N ,
tends to the limit λ, when N and α tend to infinity in such a way that
α ∼ λ

β

√
logN with λ a positive constant.

We wish to study the distribution of values of B(n+α)−B(n) for n ≤ N
and α ∼ λ

β

√
logN . In order to follow Gallagher’s method we need first a

conjecture analogues of Hardy and Littlewood’s conjecture for sums of two
squares, that is an asymptotic formula for the number Bd(N) of positive
integers n ≤ N for which all of n+d1, ..., n+dk can be represented as a sum of
two squares, d = (d1, ..., dk) and d1, ..., dk distinct integers. The conjecture,
analogous to (1.1), is that there exists a function Td, the “singular series
for our problem”, for which the limit

Bd(N) ∼ Td
N(√

logN
)k as N →∞(1.4)

holds. If this is so, then the function Td depends only on the differences
between the d1, ..., dk, in the sense that Td = Td+1 where 1 = (1, ..., 1).

Assuming this conjecture, it is enough to show that the singular series
Td has mean value β:

(1.5)
∑

1≤d1,..,dk≤H
Td ∼ (βH)k

for the moments to be Poisson with parameter λ.

1.3. Main Result. Connors and Keating conjectured in [CK] that for k = 2
and h = |d2 − d1| we have

(1.6) Td1,d2 = Th = 2W2(h)
∏

p≡3 (4)
p|h

1− p−(mp(h)+1)

1− p−1

where mp(h) is the power to which the prime p is raised in the prime de-
composition of h and

W2(h) =
{ 1

4
2m2(h)+1−3

2m2(h)+2

m2(h) = 0
m2(h) ≥ 1

Our main result is that∑
1≤d1 6 6=d2≤H

Td ∼ 2
∑

1≤h≤H−1
(H − h) Th = β2H2 + o(H2)
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and so assuming this pair correlation conjecture we show Gallagher’s Lemma
for sums of two squares and k = 2 holds, or in other words we show that
assuming the conjecture, the second moment of the distribution of values of
B(n+ α)−B(n) for n ≤ N and α ∼ λ

β

√
logN is indeed Poisson.

1.4. Mean Density and Pair correlation. We provide a new approach
to the computation of the pair correlation function stated above, which goes
through the mean density and pair correlation of representable element in
modulo rings of the form Z/pkZ for p primes and k →∞. The mean density
is thus given by

(1.7) M(n) = 1
2

∏
p≡3 (4)
p≤n

(
1 + p−1

)−1

which is the product of the densities in modulo rings mentioned above. We
compare this expression with the leading term of the analytic result for the
density of representable integers given by Landau

(1.8) L(n) = β√
logn

and produce the precise ratio between the two

lim
n→∞

M(n)
L(n) = 1

2

√
π

eγ

where γ is Euler’s constant, using a version of Mertens’ formula in geometric
progressions described in [LZ].

Next we derive (1.6) in similar methods to those used for the mean den-
sity (1.7). In Section 7 we present numeric calculations to support our
conjecture.

1.5. Generalization to other binary quadratic forms. Our methods
allow us to expand our observation also to integers representable by other
binary quadratic forms x2 + dy2 with d = 2, 3, 4, 7 in addition to d = 1,
which are the sums of two squares. A surprising result is that the ratio
between the product formulas Md(n) we present and the analytic results
using variations on Landau’s theorem Ld(n), for n→∞, is in fact constant
for the five different quadratic forms inspected and is

(1.9) lim
n→∞

Md(n)
Ld(n) = 1

2

√
π

eγ
.

We next produce conjectures analogous to (1.6) and therefore to (1.4) with
k = 2 for integers representable by the forms at hand, and finally deduce
that assuming our conjectures the second moment of the distributions in the
appropriate short intervals is Poisson.

Acknowledgments. This work is part of the author’s M. Sc. thesis written
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2. Distribution In Small Intervals - Gallagher’s Lemma

In order to obtain the second moment for the distribution of representable
integers in the intervals described above, we follow Gallagher’s work for
primes, and we will show that∑
1≤d1 6=d2≤H

Td =
∑

1≤d1 6=d2≤H
T|d2−d1| = 2

∑
1≤h≤H−1

(H−h)Th = β2H2 +o(H2)

where by the Connors and Keating conjecture

Td1,d2 = Th = 2W2(h)
∏

p≡3 (4)
p|h

1− p−(mp(h)+1)

1− p−1

and

W2(h) =
{ 1

4
2m2(h)+1−3

2m2(h)+2

m2(h) = 0
m2(h) ≥ 1

We start by computing
∑

1≤h≤H−1
Th.

2.1. Dirichlet’s Function. Set

a(h) = 2Th = 4W2(h)
∏

p≡3 (4)
p|h

1− p−(mp(h)+1)

1− p−1 .

Notice that a(h) is multiplicative: obviously a(1) = 1 since 1 is odd
and has no prime factors, and for (m,n) = 1 we have a(mn) = a(m)a(n)
because our function is composed of products depending only on the prime
factorizations.

Computing a(pk) gives

a(pk) =


1 p ≡ 1(4)

2− 3
2k p = 2

1− 1
pk+1

1− 1
p

p ≡ 3(4)
.

We can thus write

D(s) =
∞∑
h=1

a(h)h−s =
∏
p

(
1 +

∞∑
k=1

a(pk)
pks

)

=
(

1 +
∞∑
k=1

2− 3
2k

2ks

) ∏
p≡1 (4)

(
1 + p−s

1− p−s

) ∏
p≡3 (4)

1 +
∞∑
k=1

1− 1
pk+1

pks
(
1− 1

p

)


= R(s)P (s)Q(s)
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where

R(s) = 1 + 2 2−s

1− 2−s − 3 2−(s+1)

1− 2−(s+1)

P (s) =
∏

p≡1(4)
(1− p−s)−1

Q(s) =
∏

p≡3 (4)

(
1 + 1

1− p−1
p−s

1− p−s −
p−1

1− p−1
p−(s+1)

1− p−(s+1)

)
.

2.2. Comparison to Riemann’s ζ function. Taking ζ(s) =
∏
p

(1− p−s)−1,

we will now show that D(s)
ζ(s) is analytic for Re(s) > 0, thus D(s) is analytic

in that region with a simple pole at s = 1.

D(s)
ζ(s) =

1 + 2 2−s
1−2−s − 3 2−(s+1)

1−2−(s+1)

(1− 2−s)−1 ·
∏

p≡3 (4)

1 + 1
1−p−1

p−s

1−p−s −
p−1

1−p−1
p−(s+1)

1−p−(s+1)

(1− p−s)−1 .

The first expression turns out to be

R(s)
(1− 2−s)−1 = 1− 2−s + 22−s − 2−2s

1− 2−s − 32−(s+1) − 2−(2s+1)

1− 2−(s+1)

which is clearly analytic in the desired region.
The second expression is

Q(s)∏
p≡3 (4)

(1− p−s)−1 =
∏

p≡3 (4)

(
1− p−s + p−s

1− p−1 −
p−(s+2) − p−(2s+2)

(1− p−1)
(
1− p−(s+1))

)
.

Notice that

1− p−s + p−s

1−p−1 − p−(s+2)−p−(2s+2)

(1−p−1)(1−p−(s+1))
= 1 + 1

ps+1(1−p−1) −
1

ps+2(1−p−1) + 1
p2s+2(1−p−(s+1)

= 1 + 1
ps+1−ps −

1
ps+2−ps+1−p+1 + 1

p2s+2−p2s+1−ps+1+ps

= 1 +O
(

1
ps+1

)
and so the product

Q(s)∏
p≡3 (4)

(1− p−s)−1 =
∏

p≡3 (4)

(
1 +O

( 1
ps+1

))

converges in the desired region Re(s) > 0 in which it is analytic, implying
that D(s)

ζ(s) is also analytic there.
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Let A(s) be an analytic function in Re(s) > 0 defined byD(s) = A(s)ζ(s).
Since Ress=1ζ(s) = 1, in order to compute Ress=1D(s) we can simply com-
pute A(1) and so

Ress=1D(s) = A(1) =
∏

p≡3 (4)

1
1− 1

p2
= 2β2.

2.3. Some Help From Harmonic Analysis.

Theorem 1. Let F (s) =
∑∞
n=1 b(n)n−s be a Dirichlet series with positive

real coefficients and absolutely convergent for Re(s) > 1. Suppose that F (s)
can be extended to a meromorphic function in the region Re(s) ≥ 1 having
no poles except for a simple pole at s = 1 with residue R ≥ 0. Then∑

n≤x
b(n) = Rx+ o(x) as x→∞.

This is a version of the Wiener-Ikehara Theorem, for a proof see [M].
Our series a(h) meets the condition of the theorem, and so∑

1≤h≤H−1
a(h) = 2β2(H − 1) + o(H − 1) = 2β2H + o(H).

Since a(h) = 2Th we have∑
1≤h≤H−1

Th = β2H + o(H).

The next step is to calculate
∑

1≤h≤H−1
hTh. Set

A(H − 1) =
∑

1≤h≤H−1
Th = β2H + o(H)

f(h) = h

so using summation by parts

∑
1≤h≤H−1

hTh = f(H − 1)A(H − 1)−
H−1ˆ

1

A(t)f ′(t)dt

= β2H2 + o(H2)−
H−1ˆ

1

(
β2btc+ o(t)

)
dt

= β2H2 + o(H2)− β2
H−1ˆ

1

(t− {t})dt+ o(H2)

= β2
(
H2 − (H − 1)2 − 1

2 + bH − 1c − 1
2 + {H − 1}2

2

)
+ o(H2)

= 1
2β

2H2 + o(H2)
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and therefore∑
1≤d1,d2≤H

Td ∼ 2
∑

1≤h≤H−1
(H − h) Th = β2H2 + o(H2)

which is effectively Gallagher’s Lemma for sums of two squares and k = 2.

3. Sums of Squares in Modulo Rings

Following Keating-Connors we attempt to produce a 2-tuple conjecture
using essentially heuristic methods and Landau’s theorem. The first step
would be to compute an expression for the pair correlation of representable
integers:

lim
N→∞

1
N

# {n ≤ N : n, n+ h are both representable} .

To proceed, consider the consequences of the following lemma:

Lemma 2. An integer is representable if and only if it is representable in
Z/pkZ for every prime p and integer k ∈ N.

Equipped with this lemma we shall examine Z/pkZ for all primes p and
k ∈ N, and determine which are the representable elements in these mod-
ulo rings. This will allow us to give an expression for the the density of
representable elements, and then of representable pairs.

3.1. Representable elements in modulo rings.

Definition 3. Say a ∈ Z/pkZ has a non trivial representation as a sum of
two squares if there exists x, y ∈ Z/pkZ such that a ≡ x2 + y2

(
pk
)
with

(x, p) = 1.

Definition 4. Say a ∈ Z/pkZ has a completely non trivial representation as
a sum of two squares if there exists x, y ∈ Z/pkZ such that a ≡ x2 + y2

(
pk
)

with (x, p) = 1 and (y, p) = 1.

Definition 5. Say an element a ∈ Z/pkZ lifts to an element b ∈ Z/pk+lZ if
b ≡ a

(
pk
)
.

The following propositions give the information needed in order to prove
Lemma 2, to sort the representable elements in the modulo rings and to
compute their densities:

Proposition 6. Let p be an odd prime, k ∈ N and a ∈ Z/pkZ .
(a) If a has a non trivial representation and (a, p) = 1, then all lifts of a

in Z/pk+1Z have non trivial representations as well.
(b) If a has a completely non trivial representation and (a, p) > 1, then

all lifts of a in Z/pk+1Z have completely non trivial representations as well.
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Proof. For k ≥ 1, take a ∈ Z/pk+1Z such that a ≡ x2 + y2
(
pk
)
, (x, p) = 1, so

a is lifted from an element with a non trivial representation in Z/pkZ. Since
x ∈ (Z/pkZ)× the element x′ = x− x2+y2−a

2x is well defined and gives

x′2 + y2 = a+ (x2 + y2 − a)2

4x2 .

We assume x2 + y2 − a ≡ 0
(
pk
)
and so (x2 + y2 − a)2 ≡ 0

(
p2k
)
. Since

k ≥ 1 we have (x2 + y2 − a)2 ≡ 0
(
pk+1

)
, meaning x′2 + y2 ≡ a

(
pk+1

)
.

In case (a) we assume (a, p) = 1 and so p and at least one of x′, y must
be co-prime, as required. In case (b) we assume (a, p) = p and we have
(y, p) = 1, and so we must have (x′, p) = 1 as well. �

Proposition 7. Let p be an odd prime and a ∈ Z/pZ, (a, p) = 1, so a has a
non trivial representation.

Proof. We claim that for any nonzero element in Z/pZ there are x, y so that

x2 ≡ a− y2 (p) .

If u2 ≡ v2 (p) then u ≡ ±v (p), therefore x2 and a − y2 each take p+1
2

different values. Since there are only p different elements in Z/pZ there is a
couple that solves the congruence and so a is representable. Since a 6≡ 0 (p)
it is impossible that (x, p) > 1 and (y, p) > 1, and so we can choose a
representation with (x, p) = 1 as required. �

Proposition 8. Let p be a prime such that p ≡ 1 (4), so 0 ∈ Z/pZ has a
completely non trivial representation.

Proof. Since p ≡ 1 (4), −1 is a quadratic residue modulo p so there exists a
nonzero element α such that α2 ≡ −1 (p) and so 12 +α2 ≡ 1 + (−1) ≡ 0 (p)
as required. �

Proposition 9. Let p be prime such that p ≡ 3 (4). Elements 0 6= a ∈ Z/pkZ,
(a, p) > 1 are representable if and only if mp(a) is even.

Proof. If mp(a) is even, we can write a = d · p2l, (d, p) = 1. The element d
is representable as a lift of a nonzero element in Z/pZ by Propositions 6 and
7, while p2l is a square itself and therefore obviously representable. Since
the product of two representable elements is also representable, we have the
required result.

Now assume a ∈ Z/pkZ is representable, mp(a) = 2l + 1 and k > 2l + 1 :

a = d · p2l+1 ≡ x2 + y2
(
pk
)

, (d, p) = 1

=⇒ x2 + y2 = d · p2l+1 +mpk = (d+mpk−2l−1)p2l+1 , m ∈ N.

Since k − 2l − 1 > 0 and (d, p) = 1 we have (d + mpk−2l−1, p) = 1, and so
p has an odd multiplicity in the prime decomposition of x2 + y2, which is a
contradiction. �
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Using Propositions 6, 7 and 8 we establish that all elements in Z/pkZ for
p ≡ 1 (4) are representable, while Propositions 6, 7 and 9 establish that the
non representable elements in Z/pkZ for p ≡ 3 (4) are those with odd mp.
Let us now examine the elements in Z/2kZ:

Proposition 10. An element a ∈ Z/2kZ such that a ≡ 1 + 4n
(
2k
)
for some

n, is representable as a sum of squares.
Proof. For k = 1, 2 the only element in question is 1, and 1 ≡ 12+02 (4), and
for k = 3 we also have 5 ≡ 12 + 22 (8). Take k ≥ 3, a ∈ Z/2k+1Z, a ≡ 1 (4).
By our assumption there are x, y in Z/2kZ such that a ≡ x2 +y2

(
2k
)
and we

can assume (x, 2) = 1 since a ≡ 1 (4). If x2 + y2 ≡ a
(
2k+1

)
we are done.

The only other option is that x2 + y2 ≡ a+ 2k
(
2k+1

)
. In this case we have

(x+ 2k−1)2 + y2 ≡ x2 + 2kx+ 22k−2 + y2

≡ x2 + 2k + y2

≡ a+ 2k + 2k ≡ a
(
2k+1

)
.

since 2kx ≡ 2k
(
2k+1

)
and 22k−2 ≡ 0

(
2k+1

)
for k ≥ 3. �

Proposition 11. An element a ∈ Z/2kZ of the form a = 2j(1 + 4n), 0 ≤ j ≤
k − 1 is representable, and these are all the representable elements.
Proof. Using the multiplicativity of representable integers it is enough to
show that 2j is representable. For j = 2l take (2l)2 + 02 = 22l, and for
j = 2l + 1 take (2l)2 + (2l)2 = 22l+1 . There are no other representable
elements since all representable integers in N must take the form 2j(1 + 4n),
which is not changed modulo 2k. �

The proof of Lemma 2 is now clear: Say a = x2 + y2, so obviously
a ≡ x2 + y2

(
pk
)
. Conversely assume a is not representable, then for some

p ≡ 3 (4) mp(a) is odd, so a is not representable in Z/pkZ for k ≥ mp(a).

3.2. Mean density of representable elements in modulo rings. We
now wish to calculate the densities of representable elements in Z/pkZ for all
primes, k → ∞. The following propositions provide a method for deriv-
ing these limits, and present ideas which can be useful also for calculating
correlations of higher degrees.
Proposition 12. The mean density of representable elements in Z/pkZ, p ≡
1 (4) for k →∞ is 1.
Proof. This is immediate from the fact that all elements in Z/pkZ for all k
are representable. �

Proposition 13. For p ≡ 3 (4), the density of representable lifts of 0 ∈
Z/p2l+1Z in Z/pkZ tends to 1

p+1 as k → ∞. The density of representable lifts
of 0 ∈ Z/p2lZ in Z/pkZ tends to p

p+1 as k →∞.
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Proof. Consider first the lifts of 0 ∈ Z/pZ in Z/p2Z given by 0, p, 2p, ..., (p−1)p.
Obviously the multiplicity of p in the nonzero lifts is odd, and therefore they
are not representable in Z/p2Z, and so are all of their lifts in Z/pkZ for k ≥ 2.

Consider now 0 ∈ Z/p2Z and it’s lifts 0, p2, 2p2, ..., (p− 1)p2 in Z/p3Z. Here
the multiplicity of p in the nonzero lifts is even, and therefore they are
representable in Z/p2Z, and so are all of their lifts in Z/pkZ for k ≥ 3. So in
Z/p2Z we have a single representable lift of 0 ∈ Z/pZ, and in Z/p3Z we have
1 + (p− 1) such lifts.

The next step is similar to the first, where for 0 ∈ Z/p3Z the only repre-
sentable lift is 0 ∈ Z/p4Z, and each of the p − 1 nonzero lifts in Z/p3Z has p
representable lifts in Z/p4Z. So there are exactly 1 + p(p − 1) representable
lifts of 0 ∈ Z/pZ in Z/p4Z, and similarly 1 + (p − 1) + p2(p − 1) such lifts in
Z/p5Z, 1 + p(p− 1) + p3(p− 1) lifts in Z/p6Z and so on. The total number of
lifts of 0 ∈ Z/pZ in Z/pkZ is pk−1, and so the density of representable lifts is
given by

1
pk−1

1 + (p− 1)

(k−3)
2∑

n=0
p2n

 = 1
pk−1 −

1
(p+ 1)pk−1 + 1

p+ 1 for odd k,

1
pk−1

1 + p(p− 1)

(k−4)
2∑

n=0
p2n

 = 1
pk−1 −

p

(p+ 1)pk−1 + 1
p+ 1 for even k.

In both cases it is clear that the density tends to 1
p+1 as k →∞ .

Note that the exact same results holds for representable lifts of 0 ∈ Z/p2l+1Z
in Z/pkZ as k → ∞. For the density of representable lifts of 0 ∈ Z/p2lZ one
follows the exact same steps with a single shift, meaning that the above
expression is multiplied by p and thus the density of representable lifts of
0 ∈ Z/p2lZ in Z/pkZ tends to p

p+1 as k →∞ . �

Proposition 14. The mean density of representable elements in Z/pkZ, p ≡
3 (4) for k →∞ is

(
1 + p−1)−1.

Proof. It is enough to look at elements a ∈ Z/pZ. There are p − 1 elements
such that (a, p) = 1, and by Proposition 9 these are all representable and so
are all their lifts. The density of representable lifts of a = 0 ∈ Z/pZ in Z/pkZ

tends to 1
p+ 1 as k → ∞. Combining the above we arrive at the desired

expression
p− 1 + 1

p+1
p

= p

p+ 1 =
(
1 + p−1

)−1
.

�

Proposition 15. An element a ∈ Z/2kZ of the form 2j(1+4n), 0 ≤ j ≤ k−2
is lifted into two elements in Z/2k+1Z both can be written in a similar form.
Only one of the two lifts of 0 and 2k−1 can be written in that form for all
Z/2lZ, l ≥ k + 1.

11



Proof. The first lift of 2j(1 + 4n) is itself and so trivially can be written in
that form. The second is 2j(1 + 4n) + 2k = 2j(1 + 4n+ 2k−j) = 2j(1 + 4m)
since k − j ≥ 2. If a ≡ 0

(
2k
)
it can be written as a = 2l · c with c odd and

l ≥ k, so in the cases that c ≡ 3 (4) we will not be able to write a in the
required form for all Z/2lZ . If a ≡ 2k−1

(
2k
)
it can be written as a = 2k−1 ·c

with c odd, and again we will not be able to write a in the required form
for all Z/2lZ . �

Proposition 16. The mean density of representable elements in Z/2kZ , for
k →∞ is 1

2 .

Proof. Again we look at elements in Z/2Z . By Proposition 15 the density of
representable lifts of 0, 1 ∈ Z/2Z in Z/2kZ for k →∞ is 1

2 , and so the density
of representable elements in Z/2kZ for k →∞ is

2 · 1
2

2 = 1
2 .

�

We wish to calculate the mean density of representable integers, so fol-
lowing our approach we take the product of all the above densities for p ≤ n:

(3.1) M(n) = 1
2

∏
p≡3 (4)
p≤n

(
1 + p−1

)−1
.

On the other hand, the leading term in Landau’s analytic expression for
the mean density of representable integers is

L(n) = β√
logn

.

The events that an integer is representable in modulo rings of different
primes show some dependency, a dependency which gives rise to a term y(n)
which must be taken into consideration. This term should give

L(n) ∼ M(n)
y(n) .

In the next section we show that

lim
n→∞

y(n) = lim
n→∞

M(n)
L(n)

converges to some real number y.
Unfortunately we do not have a “Landau” expression for the density of

representable pairs. Using the ratio y between our product of densities to
Landau’s density we attempt to give a conjecture for pairs given by a product
of densities in modulo rings.

12



4. Ratio Between the Product of Densities and Landau’s
Result

Our expression

M(n) = 1
2 ·

∏
p≡3 (4)
p≤n

(
1 + p−1

)−1

which stands for the product of the densities of representable elements in
modulo rings, can be calculated using a generalization of Mertesns’ famous
formula for arithmetic progressions. Using these methods one can calculate
the term given by y in the previous section.

Mertens’ original formula states that∏
p≤n

(
1− p−1

)
= e−γ

logn +O

( 1
log2 n

)
where the product is over all primes less than n and γ denotes Euler’s
constant.

For co-prime integers a, q , Languasco and Zaccagnini show [LZ] a gener-
alization of Mertens’ formula

(4.1) lim
n→∞

logn1/ϕ(q) ∏
p≡a (q)
p≤n

(
1− p−1

)
=
[
e−γ

∏
p

(
1− p−1

)α(p;a,q)
]1/ϕ(q)

where ϕ is Eulers totient function, and a(p; a, q) is given by

a(p; a, q) =
{
ϕ(q)− 1 , p ≡ a (q)
−1 , otherwise

Theorem 17. The ratio between Landau’s leading term and the product of
densities in modulo rings converges and is given by

y = lim
n→∞

M(n)
L(n) = 1

2

√
π

eγ
.

Proof. Plugging a = 3, q = 4 in Mertens’ formula for primes in arithmetic
progression we have

∏
p≡3 (4)
p≤n

(
1− p−1

)
∼ e−γ/2
√

logn


∏

p≡3 (4)

(
1− p−1)

(1− 2−1)
∏

p≡1 (4)
(1− p−1)


1/2

and since (
1 + p−1

)−1
= 1− p−1

1− p−2
13



we arrive at∏
p≡3 (4)
p≤n

(
1 + p−1

)−1
∼
√

2e−γ/2
√

logn
∏

p≡3 (4)

(
1− p−1

)− 1
2
(
1 + p−1

)−1 ∏
p≡1 (4)

(
1− p−1

)− 1
2 .

We are interested in the ratio

lim
n→∞

M(n)
L(n) = lim

n→∞
M(n)

β/
√

logn
with β the Landau-Ramanujan constant given by

β = 1√
2
∏

p≡3 (4)

(
1− p−2

)−1/2

and so

lim
n→∞

M(n)
L(n) = 1

2 · 2e
−γ/2 ∏

p≡3 (4)

(
1 + p−1

)−1/2 ∏
p≡1 (4)

(
1− p−1

)−1/2
.

The two products are exactly
√
L(1) which is calculated in [SW], where

L(s) is the Dirichlet series for the non principal character modulo 4. There-
fore

y = lim
n→∞

M(n)
L(n) = e−γ/2

√
π

4 = 1
2

√
π

eγ
.

�

This is quite an elegant result, which can be easily generalized using
similar tools as will be done in section 6.

5. Representable Pairs In Modulo Rings And Their Densities

We are now in a position to look at the distribution of representable pairs
n, n+ h in Z/pkZ for p an odd prime. We first notice that since all elements
in Z/pkZ for p ≡ 1 (4) are representable, for every h all couples n, n + h are
representable. This is not the case for primes p ≡ 3 (4).

Proposition 18. The density of representable pairs (a, a+ h) in Z/pkZ, k →

∞, for primes p ≡ 3 (4) is 1− p−(mp(h)+1)

1 + p−1 .

Proof. First say mp(h) = 0 and let us look at pairs (a, a+ h) in Z/pZ. There
are p − 2 pairs such that both elements are nonzero and therefore repre-
sentable, and two additional pairs such that one of the elements is 0. By
Propositions 6 and 7 all nonzero elements lift into representable elements
and therefore all lifts of the p−2 nonzero pairs are representable. Therefore
by Proposition 13 the density of pairs with a zero element which are lifted
into representable couples is 1

p+1 , and so the density of representable pairs
is

p− 2 + 2 · 1
p+1

p
=

1− 1
p

1 + 1
p

.

14



Next say mp(h) = 1, so there are p− 1 pairs with nonzero elements and
a single pair of two zeros in Z/pZ. This does not provide enough data and so
we look at these pairs in Z/p2Z. There are p(p − 1) pairs (a, a+ h) in Z/p2Z
which are lifts of the nonzero pairs, and p pairs which are lifted from the
zero pair, each one consisting of at least one nonzero lift of zero which, as
we have seen, is not representable and so these pairs are not representable.
The density of representable pairs is therefore

p(p− 1)
p2 =

1− 1
p2

1 + 1
p

.

For mp(h) = 2, again we have p − 1 nonzero pairs with p(p − 1) repre-
sentable lifts into Z/p2Z. The zero pair’s lift remains a zero pair and so we
look at pairs in Z/p3Z. There are now p2(p− 1) pairs in Z/p2Z lifted from the
nonzero pairs, and in addition p−2 pairs which are nonzero in Z/p3Z but are
lifts of the zero pair. These lifts are representable, and the two remaining
lifts of the zero pair consist as before of a nonzero element and the zero ele-
ment, and so similarly to the case of mp(h) = 0 the density of representable
pairs is

p2(p− 1) + (p− 2) + 2 · 1
p+1

p3 =
1− 1

p3

1 + 1
p

.

Following these ideas for even mp(h) yields

(p− 1)
mp(h)

2∑
n=1

(
p2)n + p− 2 + 2 · 1

p+1

pmp(h)+1 =
1− 1

pmp(h)+1

1 + 1
p

and for odd mp(h)

p(p− 1)
mp(h)−1

2∑
n=1

(
p2)n

pmp(h)+1 =
1− 1

pmp(h)+1

1 + 1
p

.

�

Proposition 19. The density of representable pairs (a, a+ h) in Z/2kZ, k →
∞, is

W2(h) =
{ 1

4
2m2(h)+1−3

2m2(h)+2

m2(h) = 0
m2(h) ≥ 1

.

Proof. We now take into consideration the distribution of pairs (a, a+ h)
with h = 2i in Z/pkZ. For odd primes the distribution is similar to that of
(a, a+ 1) since (1, p) = (2i, p) = 1 and we have seen that the distribution
depends only on mp(h). This is true also for distribution in Z/2kZ, and so
it is enough to look at Z/2m2(h)+1Z. Set l = m2(h), and let us look at pairs
(a, a+ h) in Z/2l+1Z.

15



It is easily verified that 1
4 of the pairs are of the form

(
20(1 + 4m), 20(1 + 4m) + 2l

)
and similarly for all 0 ≤ i ≤ l − 2 we have 1

2i+2 of the pairs are of the
form

(
2i(1 + 4m), 2i(1 + 4m) + 2l

)
. The pair

(
2l−1, 2l−1 + 2l

)
is not repre-

sentable since 2l−1 + 2l = 3 · 2l−1. The last two pairs we must take into
consideration are (0, 2l) and (2l, 0). As shown in proposition 15 the density
of representable lifts of these pairs to Z/2kZ for k →∞ is 1

2 ·
1
2 .

We can now compute the density of representable pairs:
l∑

n=2

1
2n + 2 · 1

2 ·
1
2 ·

1
2l+1 = 2l+1 − 3

2l+2 .

For l = 0, 1 the sum does not contribute and so the density is 1
4 and 1

8
respectively, giving the desired result. �

As before the events that a pair (m,m+ h) , m ≤ n is representable in
all the prime power modulo rings are not independent, a dependency which
gives rise to a term Yh(n) which must be taken into consideration. The
density of representable pairs is thus:

1
Yh(n) ·W2(h)

∏
p≡3 (4)
p≤n

1− p−(mp(h)+1)

1 + p−1 .

Following Connors-Keating we extract the asymptotic term depending on
n from the above expression using our calculation for the mean density of
representable integers:

1
Yh(n) ·W2(h)

∏
p≡3 (4)
p≤n

1− p−(mp(h)+1)

1 + p−1 ·
(

L(n)
M(n)/y(n)

)2

∼ 1
logn

(
y(n)2

Yh(n)

)( 1√
2

1
2

)2
W2(h) ·(5.1)

∏
p≡3 (4)
p≤n

(
1− p−(mp(h)+1)

) (
1− p−2)−1

(1 + p−1) (1 + p−1)−2

∼ 1
logn ·

(
y(n)2

Yh(n)

)
· 2W2(h)

∏
p≡3 (4)
p≤n

1− p−(mp(h)+1)

1− p−1 .

Notice that for p such that mp(h) = 0 the product is 1, and since we are
interested in n → ∞, we can assume n ≥ h and so the product is over all
p ≡ 3 (4) such that p | h. The conjecture presented by Connors-Keating is
thus equivalent to the conjecture that for all h

y(n)2

Yh(n) → 1, as n→∞,
16



a conjecture for which we present some numerical computations in Section
7.

Assuming the validity of this conjecture the density of representable pairs
is given by

Th = 1
logn · 2W2(h)

∏
p≡3 (4)
p|h

1− p−(mp(h)+1)

1− p−1 .

6. Generalization to Other Binary Quadratic Forms

6.1. Preliminaries. Let us look at the following family of binary quadratic
forms

q(d;x, y) = x2 + dy2.

Definition 20. We say that d ∈ N is a convenient (idoneal) number if there
is finite set of primes S, an integerN and congruence classes c1, ..., ck mod N
such that for all primes p 6∈ S

p = x2 + dy2 ⇐⇒ p ≡ c1, ..., ck mod N.

Example 21. For d = 1, S = {2}, c1 = 1 and N = 4 we have Fermat’s
result for sums of two squares.

We focus here on convenient d’s such that the form x2 + dy2 is of class
number 1 which are d = 1, 2, 3, 4, 7 . In these cases one can fully determine
if an integer n is representable by the form simply by making sure that the
primes which are not representable appear with an even multiplicity in the
integer’s prime factorization.

Again we are first interested in the mean density of representable integers,
and we can calculate the densities in the modulo rings in the exact same way
that we did for d = 1 and thus generalize (3.1) . In [SS] Shanks produces
Landau’s constants β1, β2, β3,β4, β7 for which

#
{
n ≤ N |nis of the form x2 + dy2} ∼ βd N√

logN
and so we can again calculate the ratio between the product and the analytic
expressions as was done in Section 4 for sums of squares.

First let us recall the following classical results:

Theorem 22. An integer n is representable by the form x2 + dy2 if and
only if:

• If d = 1, mp(n) is even for all primes p ≡ 3 (4).
• If d = 2, mp(n) is even for all primes p ≡ 5, 7 (8).
• If d = 3, mp(n) is even for all primes p ≡ 2 (3).
• If d = 4, mp(n) is even for all primes p ≡ 3 (4) and m2(n) 6= 1 .
• If d = 7, mp(n) is even for all primes p ≡ 3, 5, 6 (7) and m2(n) 6= 1.

The conditions for representation by these forms bare obvious resemblance.
17



Definition 23. For convenience reasons we divide the primes into the fol-
lowing sets:

• Let Qd denote primes p such that if n is of the form x2 + dy2 then
mp(n) is even. Notice that by Dirichlet’s theorem this consists of
approximately half of the primes.
• Let Rd denote primes p such that if n is of the form x2 + dy2 then
mp(n) has some constraint which is not that mp(n) is even, or the
N for which p = x2 + dy2 ⇐⇒ p ≡ c1, ..., ck mod N is such that
(p,N) 6= 1. Notice that Rd is a finite set.
• Let Pd denote primes p not in any of the above sets, or more directly
primes of the form x2 + dy2 such that (p,N) = 1. Again this set
consists of approximately half of the primes.

Example 24. Q1 = {p prime: p ≡ 3 (4)}, P1 = {p prime: p ≡ 1 (4)}, R1 =
{2}.
Q7 = {p prime: p ≡ 3, 5, 6 (7)}, P7 = {p prime: p ≡ 1, 2, 4 (7), p 6= 2},

R7 = {2, 7}.

6.2. Ratio between the product density and Landau’s density. Fol-
lowing the same methods established in Section 3 for our product calculation
ofM(n) we can now give a product expression forMd(n), which stands for
the product formula for the mean density of integers of the form x2 + dy2.
Notice that for all the above d’s the condition for being representable by the
form is over half of the primes plus some local conditions, and so again we
have an expression of the form

Md(n) =
∏
p∈Rd

wd(p)
∏
p∈Qd
p≤n

(
1 + p−1

)−1

with wd(p) the mean density of representable element in Z/pkZ, k →∞ , for
p ∈ Rd. The primes p ∈ Pd do not participate here since similarly to the
case of sum of two squares, the mean density of representable elements in
Z/pkZ , k →∞ , is 1.

These products can be computed using Merten’s formula for arithmetic
progressions, as was done in the previous section for d = 1:∏
p∈Qd
p≤n

(
1 + p−1

)−1
∼ e−γ/2
√

logn
∏
p∈Qd

(
1− p−1

)− 1
2
(
1 + p−1

)−1 ∏
p∈Pd∪Rd

(
1− p−1

)− 1
2 .

Again we are interested in the analogue of (1.9), that is in the ratio
between these products and the leading term of the analytic expression
given by the generalization of Landau’s theorem as shown in [SS]:

(6.1) Ld(n) = βu√
logn

, βd = δd · gd ·
(
Ld(1) · 2 |d|
πϕ(2 |d|)

) 1
2

18



with ϕ the Euler totient function and

gd =
∏(
−d
p

)
=−1

(
1− p−2

)− 1
2

Ld(s) =
∑

odd n

(−d
n

)
n−s =

∏(
−d
p

)
=1

(
1− p−s

)−1 ∏(
−d
p

)
=−1

(
1 + p−s

)−1

δd =


1 , d = 1, 2
2
3 , d = 3
3
4 , d = 4, 7

Notice that for d = 1, 2, 3, 4, 7(−d
p

)
= 1 ⇐⇒ p ∈ Pd

and (−d
p

)
= −1 ⇐⇒ p ∈ Qd

unless d = 3, in which case Q3 =
{
p :

(
−d
p

)
= −1

}
∪ {2}.

Reformulating the products above we have

gd =
∏

26=p∈Qd

(
1− p−2

)− 1
2 = γd

∏
p∈Qd

(
1− p−2

)− 1
2

where γd =
{

1 , d = 1, 2, 4, 7√
3

2 , d = 3
, and

√
Ld(1) =

∏
p∈Pd

(
1− p−1

)− 1
2

∏
26=p∈Qd

(
1 + p−1

)− 1
2

=
∏
p∈Pd

(
1− p−1

)− 1
2 λd

∏
p∈Qd

(
1 + p−1

)− 1
2

where λd =

1 , d = 1, 2, 4, 7√
3
2 , d = 3

.

The ratio in question is therefore given by

lim
n→∞

yd(n) = lim
n→∞

Md(n)
Ld(n) = lim

n→∞
Md(n)

βd/
√

logn
=

∏
p∈Rd wd(p)

1
δd

√
π
eγ ·

√
ϕ(2|d|)

2|d|
1

γdλd

∏
p∈Rd

(
1− p−1)− 1

2 .

Recall ϕ(n)
n =

∏
p|n

(
1− p−1). For d = 1, 2, 4, 7 we have p|2d ⇐⇒ p ∈ Rd

and so all the products cancel each other. For d = 3 we have 2|2d and
19



2 6∈ R3, so we are left with the term
(
1− 2−1) 1

2 = 1√
2 . since 1√

2
2√
3

√
2√
3 = 2

3
we can write

lim
n→∞

yd(n) =
∏
p∈Rd

wd(p)
1
δd

√
π

eγ
· sd

where sd =
{

1 , d = 1, 2, 4, 7
2
3 , d = 3

.

We can now examine this result for different values of d:

Theorem 25. For d = 1, 2, 3, 4, 7 the ratio between the product of densities
in the modulo rings and Landau’s density of integers representable by the
forms x2 + dy converges to 1

2

√
π
eγ as n→∞, that is

lim
n→∞

yd(n) = lim
n→∞

Md(n)
Ld(n) = 1

2

√
π

eγ
= y.

Proof. We compute the ratio case by case:
d = 1. We have already seen in the previous section that R1 = {2}, and

that w1(2) = 1
2 , since the representable elements in Z/2kZ are of the form

2j(1 + 4n) and the density of such elements approaches 1
2 as k → ∞. In

addition δ1 = 1 and sd = 1 and so

lim
n→∞

M1(n)
L1(n) = 1

2

√
π

eγ
.

d = 2. Again R2 = {2} . Here w2(2) = 1
2 because representable elements

in Z/2kZ are of the form 2j(1 + 8n) or 2j(3 + 8n) and the density of such
elements approaches 1

2 as k →∞. Also δ1 = 1 and sd = 1 and so

lim
n→∞

M2(n)
L2(n) = 1

2

√
π

eγ
.

d = 3. R3 = {3}, and w3(3) = 1
2 since the representable elements in Z/3kZ

are of the form 3j(1 + 3n) and the density of such elements approaches 1
2 as

k →∞. Here δ3 = 2
3 and sd = 2

3 therefore the ratio is given by

lim
n→∞

M3(n)
L3(n) = 1

2 ·
3
2

√
π

eγ
· 2

3 = 1
2

√
π

eγ
.

d = 4. Once again R4 = {2}. This case is similar to that of d = 1 only
here the representable elements in Z/2kZ are of the form 2j(1 + 4n) with
j 6= 1. The density of such elements is 3

8 as k → ∞. So w4(2) = 3
8 , δ4 = 3

4
and s4 = 1

lim
n→∞

M4(n)
L4(n) = 3

8 ·
4
3

√
π

eγ
= 1

2

√
π

eγ
.

d = 7. Here R7 = {2, 7}. Representable elements in Z/7kZ are of the form
7j(1 + 7n) , 7j(2 + 7n) or 7j(4 + 7n) and the density such elements is 1

2 as
k → ∞. The representable elements in Z/2kZ are of the form 2j(1 + 4n) or
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2j(3 + 4n) with j 6= 1, and the density of such elements approaches 3
4 as

k →∞. We thus have w7(2) = 3
4 , w7(7) = 1

2 , δ7 = 3
4 and s1 = 1

lim
n→∞

M7(n)
L7(n) = 1

2 ·
3
4 ·

4
3

√
π

eγ
= 1

2

√
π

eγ
.

�

6.3. Pair correlation conjecture. We can now propose a conjecture for
the pair correlation function for the forms x2 + dy2 with d = 1, 2, 3, 4, 7,
generalizing (1.6) and (1.4) . Denote byWd,p(h) the density of representable
pairs (a, a+ h) in Z/pkZ, k → ∞, for p ∈ Rd, and Yd,h(n) the dependance
term which must be taken into consideration. We extract the asymptotic
term depending on n as was done in (5.1):

1
Yd,h(n)

∏
p∈Rd

Wd,p(h) ·
∏
p∈Qd
p≤n

1− p−(mp(h)+1)

1 + p−1

∼ 1
Yd,h(n)

∏
p∈Rd

Wd,p(h)
∏
p∈Qd
p≤n

1− p−(mp(h)+1)

1 + p−1

( Ld(n)
Md(n)/yd(n)

)2

∼ 1
logn ·

(
y2
d(n)

Yd,h(n)

) ∏
p∈Rd

Wd,p(h)
w2
d(p)

∏
p∈Qd
p≤n

1− p−(mp(h)+1)

(1 + p−1)−1 · δ2
d · g2

d ·
Ld(1) · 2 |d|
πϕ(2 |d|) .

Let us first look at the products at hand. As before∏
p∈Qd
p≤n

1− p−(mp(h)+1)

(1 + p−1)−1 · g2
d =

∏
p∈Qd
p≤n

1− p−(mp(h)+1)

(1 + p−1)−1
∏

26=p∈Qd

(
1− p−2

)−1

∼
∏
p∈Qd
p|h

1− p−(mp(h)+1)

1− p−1 · Sd

where Sd =
{

1 , d = 1, 2, 4, 7
3
4 , d = 3

.

Again the conjecture is that for all h

y2
d(n)

Yd,h(n) → 1, as n→∞

and so

(6.2) Td,h = cd
∏
p∈Rd

Wd,p(h)
∏
p∈Qd
p|h

1− p−(mp(h)+1)

1− p−1
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where

cd = δ2
u

Lu(1) · 2 |u|
πϕ(2 |u|)

∏
p∈Rd

1
w2
d(p)

Sd

It is left to compute cd andWd,p(h) case by case. Dirichlet’s class number
formula (see [SW]) gives

(6.3) L1(1) = π

4 , L2(1) = π

2
√

2
, L3(1) = π

2
√

3
, L4(1) = π

4 , L7(1) = π

2
√

7
and so plugging all the different term we have

(6.4) c1 = 2, c2 = 2
√

2, c3 = 2√
3
, c4 = 2, c7 = 2

√
7

3 .

In addition, calculations similar to those shown for sums of squares in
Section 5 give

W1,2(h) =


1
4 , m2(h) = 0
2m2(h)+1 − 3

2m2(h)+2 , m2(h) ≥ 1

W2,2(h) =


1
4 , m2(h) = 0, 1
2m2(h) − 3
2m2(h)+1 , m2(h) ≥ 2

W3,3(h) = 1
2 ·

3m3(h)+1 − 2
3m3(h)+1

W4,2(h) =


1
8 , m2(h) = 0
0 , m2(h) = 1
5
16 , m2(h) = 2
3·2m2(h)−1−3

2m2(h)+2 , m2(h) ≥ 3

W7,2(h) =
{

1
2 , m2(h) = 0, 1
3
4 , m2(h) ≥ 2

, W7,7(h) = 1
2 ·

7m7(h)+1 − 4
7m7(h)+1 .

6.4. Distribution in short intervals - the second moment. We wish
to generalize our result from Section 2 concerning the second moments of
the distribution of representable integers in short intervals.

Theorem 26. Let Xd(n) be the number of integers which can be represented
by the form x2 + dy2, d = 1, 2, 3, 4, 7 , in the interval (n, n+ αd), αd ∼
λ
βd

√
logN . Denote Pl(αd, N) the number of integers n ≤ N for which the

interval (n, n + αd) contains exactly l such integers. Assuming (6.2) the
second moment of Pl(αd, N) is Poisson.
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Proof. Following the steps described in Section 2 it is enough to show that∑
1≤h≤H−1

Td,h = β2
dH + o(H).

In order to do that we normalize Td,h by defining ad(h) = Td,h
Td,1

which is

now multiplicative, and show that Dd(s) =
∞∑
n=1

ad(h)n−s has a simple pole

at s = 1 with residue βd
Td,1

, as was done for sums of squares. Following the
exact same steps we have

Dd(s) = Rd(s)Pd(s)Qd(s)
where

Rd(s) =
∏
p∈Rd

(
1 +

∞∑
k=1

a(pk)
pks

)

Pd(s) =
∏
p∈Pd

(
1− p−s

)−1

Qd(s) =
∏
p∈Qd

(
1 + 1

1− p−1
p−s

1− p−s −
p−1

1− p−1
p−(s+1)

1− p−(s+1)

)
.

It can be shown Dd(s) = Ad(s)ζ(s) with Ad(s) analytic, and so to calcu-
late the residue of D(s) at s = 1 it is left to calculate Ad(1) which gives

Ad(1) = lim
s→1

Dd(s)
ζ(s) =

∏
p∈Rd

1 +
∑∞
k=1

a(pk)
pk

(1− p−1)−1
∏
p∈Qd

(
1− p−2

)−1
.

Recall
β2
d = δ2

d

Ld(1) · 2 |d|
πϕ(2 |d|)

∏
p∈Qd

(
1− p−2

)−1

and so it remains to show that indeed for d = 1, 2, 4, 7

∏
p∈Rd

1 +
∑∞
k=1

a(pk)
pk

(1− p−1)−1 =
δ2
d
Ld(1)·2|d|
πϕ(2|d|)
Td,1

Following the steps detailed in section 2 and plugging in all the relevant
constants, all computed above, we arrive at the desired result. �

7. Numerical Computations

The approach taken in [CK] as well as ours to the pair correlation con-
jecture for integers representable as the sum of two squares, stated in (1.6),
is essentially heuristic, and so some numerical computations are in place in
order to support our conjecture. The conjecture as stated here is that

y(N)2

Yh(N) → 1, as n→∞
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which, as shown in (5.1), can be calculated by taking the ratio between the
numeric density of pairs and the conjectured pair correlation function:

y(N)2

Yh(N) =
1
N# {n ≤ N |n and n+ h are representable}

1
logN · 2W2(h)

∏
p≡3 (4)
p|h

1− p−(mp(h)+1)

1− p−1

In Figure 7.1 we present some calculations of this ratio for various h :

Figure 7.1. y(N)2

Yh(N) for 1 ≤ h ≤ 25 at N = 106,108

Examining different values of h for which the primes 2 and p ≡ 3 (4)
appear with equal multiplicity, such as h = 1, 5, 17, 25 or h = 4, 20, one can
see they take very similar values. This was checked for many more values
of h which are not shown here and so strengthens our belief that the pair
correlation depends only on the multiplicity of these primes in h.

One can also see that the fluctuations between different values of h di-
minish for larger N , where the peaks in the above graph are obtained at
values of h for which m2(h) = 1, 2 or m3(h) = 1, since the small primes are
the most dominant in our computations.

We must not be discouraged by the extremely slow decay to 1, for it
is consistent with the large error term which appears in Landau’s theorem
in (1.3). In fact the convergence implied in Landau’s theorem, or more
precisely

β2(N) =

# {n ≤ N |n is representable}
β N√

logN

2

→ 1 , N →∞
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shows similar behavior as shown in Figure 7.2, in which the values for the
ratio y(N)2

Yh(N) are calculated for h = 1. The reason we compare the rate of
convergence to that of β2(N) and not to β(N) is that we look at pairs of
representable integers. The values for the ratio y(N)2

Yh(N) are calculated for
h = 1.

Figure 7.2. y(N)2

Y1(N) and Landau’s β2 convergence

The generalizations presented in Section 6 for integers of the form x2+dy2

show similar numeric results. Figure 7.3 is the equivalent of Figure 7.1 for
integers representable by x2 + 2y2.
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Figure 7.3. y2(N)2

Y2,h(N) for1 ≤ h ≤ 25 at N = 106, 108

We have obtained results of this type for the other forms in question
where the main difference between the forms is the location of the peaks,
which occur at values of h with small mp(h) for small primes p ∈ Qd ∪Rd.

To conclude we have arrived with numerical results which are consistent
with our expectation regarding the dependency on the prime decomposition
of h, and regarding the rate of convergence. Note that the numerical data
presented here improves previous computations by a factor of 10 for 1 ≤
h ≤ 25 as appears in Figure 7.1 and by 1000 for h = 1 as appears in Figure
7.3.

8. further Directions

The work presented here may be expanded by producing conjectures for k-
correlation functions for the set of representable pairs for k ≥ 3, as described
in (1.4). For example, following the methods presented for the calculation
of the mean density and the pair correlation one can derive the following
result for the density of representable triplets of the form (n, n+ 1, n+ 2)
for n ≤ N , given by

(8.1) 1
log

3
2 N
· 1

8β ·
∏

p≡3 (4)
n≤N

1− 2
p(

1− 1
p

)2 ≈
0.11698
log

3
2 N

It is possible to generalize this result for triplets (n, n+ h1, n+ h2) and
so on for higher degrees, though it seems difficult to obtain a general k
-correlation function this way because of the inductive element of our ap-
proach. Also when comparing the expression for the density of representable
triplets (8.1) to the expression for the density of representable pairs (1.6)
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one can easily notice that the product for the latter depends only on primes
dividing h , where in the case of the triplets the product is over all primes
p ≡ 3 (4) and so the manipulation of such expressions is bound to be more
complicated.

A second direction, assuming a k -correlation function is obtained, is to
prove (1.5), which is a version of Gallagher’s Lemma (1.2)for sums of two
squares. Gallagher’s approach in [G], and similarly the approach taken by
Ford when proving the Lemma in the case of the primes, would apparently
not do in the case of sums of two squares. Proving this would assert that
assuming a k -correlation conjecture the distribution of representable inte-
gers in short intervals is Poissonian, and here is the place to state that we
believe that this is indeed the case.

The main difference between the case of the set of primes and the case of
the set of integers representable as a sum of two squares is the k-correlation
conjectures. While Hardy and Littlewood’s conjecture for primes (1.1) de-
pends only on the νd(p) which stands for the number of residue classes
modulo p occupied by d1, ..., dk, which in the case of k = 2 is equivalent to
whether or not p divides d2 − d1 or whether or not if mp(d2 − d1) is 0, in
the case of the sums of squares Connors and Keating’s conjecture (1.6) and
the numerical work presented in Section (7) provide evidence of dependence
also on the values of mp(d2−d1). Our proof of Gallagher’s Lemma for sums
of squares and k = 2 uses Dirichlet analysis, though these methods become
extremely difficult in higher dimensions.

We hope this work encourages the reader to further explore the set of
integers representable by sums of squares an other forms, where there is a
lot yet to be done.
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